top of page

Portfolio

Writer's picturePatti Crosswait

Multiple Classifier models for Telecommunication Customers



Load the dataset into a pandas dataframe and display the first 5 lines of the dataset along with the column headings.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd


#Loading the dataset

dataset = pd.read_csv('data.csv')

dataset.head(n=5)

Display the number of instances for each class.

dataset.custcat.value_counts()

Create histograms of columns age and income to visually explore their distributions.


dataset.hist(column = 'age')

dataset.hist(column = 'income')




Split the dataset into training (80%) and testing set (20%).


X = dataset.iloc[:,:-1].values

y = dataset.iloc[:,11].values


#Splitting the data into Training Set and Test Set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=0)


Perform normalization of the data using standardization

#Normalizing the features

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

X_train = sc_X.fit_transform(X_train)

X_test = sc_X.transform(X_test)

Model 1: Fit a logistic regression model. What is the testing misclassification rate?

#Fitting Logistic Regression to Training Set

from sklearn.linear_model import LogisticRegression

classifierObj = LogisticRegression(random_state=0)

classifierObj.fit(X_train, y_train)


#Making predictions on the Test Set

y_pred = classifierObj.predict(X_test)


from sklearn.metrics import accuracy_score


accuracy = accuracy_score(y_test, y_pred)

error_rate = 1 - accuracy

error_rate = 0.615


Model 2: Fit k-NN. However for k-NN I needed to specify the value for k. In order to figure that out, I ran k-NN with different values of k and computed the testing misclassification rate. I plotted a chart with k on X-axis and testing error on the Y-axis to determine the lowest value of testing error and corresponding value of k?

# import Matplotlib

import matplotlib.pyplot as plt

from sklearn import metrics

from sklearn.neighbors import KNeighborsClassifier

# try K=1 through K=25 and record testing accuracy

k_range = range(1, 26)


error_rates = []


# Append the scores in the dictionary

for k in k_range:

knn = KNeighborsClassifier(n_neighbors=k, p=2, metric='minkowski')

knn.fit(X_train, y_train)

y_pred = knn.predict(X_test)

accuracy = metrics.accuracy_score(y_test, y_pred)

error_rates.append(1-accuracy)


print(error_rates)


# allow plots to appear within the notebook

%matplotlib inline


# plot the relationship between K and testing accuracy

plt.plot(k_range, error_rates)

plt.xlabel('Value of K for KNN')

plt.ylabel('Testing Error')

[0.775, 0.74, 0.7150000000000001, 0.7, 0.69, 0.69, 0.665, 0.6599999999999999, 0.665, 0.645, 0.655, 0.655, 0.665, 0.6699999999999999, 0.6699999999999999, 0.675, 0.675, 0.7050000000000001, 0.71, 0.6950000000000001, 0.7050000000000001, 0.69, 0.6799999999999999, 0.675, 0.69]



Model 3: Fit SVM model with different kernels. Find the kernel which gives the least testing error?

#Fitting Classifier to Training Set.

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score


classifierObj = SVC(kernel='linear')

classifierObj.fit(X_train, y_train)


#Making predictions on the Test Set

y_pred = classifierObj.predict(X_test)


accuracy_linear = accuracy_score(y_test, y_pred)

error_rate_linear = 1 - accuracy_linear

print('error_rate_linear: ' + str(error_rate_linear))


#########################################################

#Fitting Classifier to Training Set

classifierObj = SVC(kernel='poly', degree=3)

classifierObj.fit(X_train, y_train)

#Making predictions on the Test Set

y_pred = classifierObj.predict(X_test)


accuracy_poly = accuracy_score(y_test, y_pred)

error_rate_poly = 1 - accuracy_poly

print('error_rate_poly: ' + str(error_rate_poly))


#########################################################

classifierObj = SVC(kernel='sigmoid')

classifierObj.fit(X_train, y_train)

#Making predictions on the Test Set

y_pred = classifierObj.predict(X_test)

accuracy_sigmoid = accuracy_score(y_test, y_pred)

error_rate_sigmoid = 1 - accuracy_sigmoid

print('error_rate_sigmoid: ' + str(error_rate_sigmoid))

#the linear kernel has the least testing error error_rate_linear: 0.61 error_rate_poly: 0.63 error_rate_sigmoid: 0.665


Model 4: Fit Naïve Bayes model and found the testing error?

#Fitting Classifier to Training Set. Create a classifier object here and call it classifierObj

from sklearn.naive_bayes import GaussianNB

classifierObj = GaussianNB()

classifierObj.fit(X_train, y_train)


#Making predictions on the Test Set

y_pred = classifierObj.predict(X_test)


accuracy = accuracy_score(y_test, y_pred)

error_rate = 1 - accuracy

error_rate = 0.6


Model 5: Fit Random Forest model. For Random Forest, I needed to specify the number of trees (n_estimators). In order to figure that out, I ran Random Forest with different values of n_estimators and computed the testing misclassification rate. Plotted a chart with n_estimators on X-axis and testing error on the Y-axis to find the lowest value of testing error and corresponding value of n_estimators

#Fitting Classifier to Training Set

from sklearn.ensemble import RandomForestClassifier

# try K=1 through K=29 and record testing accuracy

n_range = range(1, 30)


error_rates_randomforest = []


for n in n_range:

classifierObj = RandomForestClassifier(n_estimators=n, criterion='entropy')

classifierObj.fit(X_train, y_train)

y_pred = classifierObj.predict(X_test)

accuracy = metrics.accuracy_score(y_test, y_pred)

error_rates_randomforest.append(1-accuracy)


print(error_rates_randomforest)

print(n_range)


# allow plots to appear within the notebook

%matplotlib inline


# plot the relationship between K and testing accuracy

plt.plot(n_range, error_rates_randomforest)

plt.xlabel('n_estimators')

plt.ylabel('Testing Error')


[0.78, 0.7, 0.65, 0.665, 0.7150000000000001, 0.63, 0.685, 0.675, 0.645, 0.62, 0.655, 0.65, 0.645, 0.6599999999999999, 0.675, 0.675, 0.665, 0.625, 0.735, 0.6699999999999999, 0.685, 0.665, 0.665, 0.72, 0.655, 0.64, 0.685, 0.65, 0.65] range(1, 30)




25 views0 comments

Recent Posts

See All

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
bottom of page